An Inexact Smoothing Newton Method for Euclidean Distance Matrix Optimization Under Ordinal Constraints
نویسنده
چکیده
When the coordinates of a set of points are known, the pairwise Euclidean distances among the points can be easily computed. Conversely, if the Euclidean distance matrix is given, a set of coordinates for those points can be computed through the well known classical Multi-Dimensional Scaling (MDS). In this paper, we consider the case where some of the distances are far from being accurate (containing large noises or even missing). In such a situation, the order of the known distances (i.e., some distances are larger than others) is valuable information that often yields far more accurate construction of the points than just using the magnitude of the known distances. The methods making use of the order information is collectively known as non-metric MDS. A challenging computational issue among all existing nonmetric MDS methods is that there are often a large number of ordinal constraints. In this paper, we cast this problem as a matrix optimization problem with ordinal constraints. We then adapt an existing smoothing Newton method to our matrix problem. Extensive numerical results demonstrate the efficiency of the algorithm, which can potentially handle a very large number of ordinal constraints. Mathematics subject classification: 90C30, 90C26, 90C90.
منابع مشابه
Constrained Best Euclidean Distance Embedding on a Sphere: A Matrix Optimization Approach
The problem of data representation on a sphere of unknown radius arises from various disciplines such as Statistics (spatial data representation), Psychology (constrained multidimensional scaling), and Computer Science (machine learning and pattern recognition). The best representation often needs to minimize a distance function of the data on a sphere as well as to satisfy some Euclidean dista...
متن کاملInexact Newton-type Optimization with Iterated
This paper presents and analyzes an Inexact Newton-type optimization method 4 based on Iterated Sensitivities (INIS). A particular class of Nonlinear Programming (NLP) problems 5 is considered, where a subset of the variables is defined by nonlinear equality constraints. The pro6 posed algorithm considers any problem-specific approximation for the Jacobian of these constraints. 7 Unlike other i...
متن کاملA smoothing inexact Newton method for variational inequalities with nonlinear constraints
In this paper, we propose a smoothing inexact Newton method for solving variational inequalities with nonlinear constraints. Based on the smoothed Fischer-Burmeister function, the variational inequality problem is reformulated as a system of parameterized smooth equations. The corresponding linear system of each iteration is solved approximately. Under some mild conditions, we establish the glo...
متن کاملEuclidean distance matrix completion problems
A Euclidean distance matrix is one in which the (i, j) entry specifies the squared distance between particle i and particle j. Given a partially-specified symmetric matrix A with zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the unspecified entries to make A a Euclidean distance matrix. We survey three different approaches to solving the EDMCP.We advoca...
متن کاملCalibrating Least Squares Covariance Matrix Problems with Equality and Inequality Constraints
In many applications in finance, insurance, and reinsurance, one seeks a solution of finding a covariance matrix satisfying a large number of given linear equality and inequality constraints in a way that it deviates the least from a given symmetric matrix. One difficulty in finding an efficient method for solving this problem is due to the presence of the inequality constraints. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017